feat(data-align): 实现用户关注、粉丝及笔记发布数的数据对齐功能
- 新增 LUA 脚本实现布隆过滤器校验日增量数据 - 修改表结构将 t_data_align_note_publish_count_temp 的 note_id 替换为 user_id -为 CreateTableXxlJob 添加事务管理确保表创建一致性 - 新增 FollowUnfollowMqDTO 和 NoteOperateMqDTO 用于消息传递 - 扩展 InsertRecordMapper 支持插入关注、粉丝和笔记发布计数记录 - 在 RedisKeyConstants 中新增多个布隆过滤器相关常量和构建方法 - 新增两个 RocketMQ 消费者处理用户关注/取关和笔记发布/删除事件 - 更新 HTTP 测试文件中的请求参数以适配最新接口逻辑
This commit is contained in:
@@ -12,4 +12,14 @@ public interface MQConstants {
|
||||
*/
|
||||
String TOPIC_COUNT_NOTE_COLLECT = "CountNoteCollectTopic";
|
||||
|
||||
/**
|
||||
* Topic: 笔记操作(发布、删除)
|
||||
*/
|
||||
String TOPIC_NOTE_OPERATE = "NoteOperateTopic";
|
||||
|
||||
/**
|
||||
* Topic: 关注数计数
|
||||
*/
|
||||
String TOPIC_COUNT_FOLLOWING = "CountFollowingTopic";
|
||||
|
||||
}
|
||||
@@ -12,6 +12,21 @@ public class RedisKeyConstants {
|
||||
*/
|
||||
public static final String BLOOM_TODAY_NOTE_COLLECT_LIST_KEY = "bloom:dataAlign:note:collects:";
|
||||
|
||||
/**
|
||||
* 布隆过滤器:日增量变更数据,用户笔记发布,删除 前缀
|
||||
*/
|
||||
public static final String BLOOM_TODAY_USER_NOTE_OPERATOR_LIST_KEY = "bloom:dataAlign:user:note:operators:";
|
||||
|
||||
/**
|
||||
* 布隆过滤器:日增量变更数据,用户关注数 前缀
|
||||
*/
|
||||
public static final String BLOOM_TODAY_USER_FOLLOW_LIST_KEY = "bloom:dataAlign:user:follows:";
|
||||
|
||||
/**
|
||||
* 布隆过滤器:日增量变更数据,用户粉丝数 前缀
|
||||
*/
|
||||
public static final String BLOOM_TODAY_USER_FANS_LIST_KEY = "bloom:dataAlign:user:fans:";
|
||||
|
||||
|
||||
/**
|
||||
* 构建完整的布隆过滤器:日增量变更数据,用户笔记点赞,取消点赞 KEY
|
||||
@@ -33,4 +48,34 @@ public class RedisKeyConstants {
|
||||
return BLOOM_TODAY_NOTE_COLLECT_LIST_KEY + date;
|
||||
}
|
||||
|
||||
/**
|
||||
* 构建完整的布隆过滤器:日增量变更数据,用户笔记发布,删除 KEY
|
||||
*
|
||||
* @param date 日期
|
||||
* @return 完整的布隆过滤器:日增量变更数据,用户笔记发布,删除 KEY
|
||||
*/
|
||||
public static String buildBloomUserNoteOperateListKey(String date) {
|
||||
return BLOOM_TODAY_USER_NOTE_OPERATOR_LIST_KEY + date;
|
||||
}
|
||||
|
||||
/**
|
||||
* 构建完整的布隆过滤器:日增量变更数据,用户关注数 KEY
|
||||
*
|
||||
* @param date 日期
|
||||
* @return 完整的布隆过滤器:日增量变更数据,用户关注数 KEY
|
||||
*/
|
||||
public static String buildBloomUserFollowListKey(String date) {
|
||||
return BLOOM_TODAY_USER_FOLLOW_LIST_KEY + date;
|
||||
}
|
||||
|
||||
/**
|
||||
* 构建完整的布隆过滤器:日增量变更数据,用户粉丝数 KEY
|
||||
*
|
||||
* @param date 日期
|
||||
* @return 完整的布隆过滤器:日增量变更数据,用户粉丝数 KEY
|
||||
*/
|
||||
public static String buildBloomUserFansListKey(String date) {
|
||||
return BLOOM_TODAY_USER_FANS_LIST_KEY + date;
|
||||
}
|
||||
|
||||
}
|
||||
@@ -0,0 +1,91 @@
|
||||
package com.hanserwei.hannote.data.align.consumer;
|
||||
|
||||
import com.hanserwei.framework.common.utils.JsonUtils;
|
||||
import com.hanserwei.hannote.data.align.constant.MQConstants;
|
||||
import com.hanserwei.hannote.data.align.constant.RedisKeyConstants;
|
||||
import com.hanserwei.hannote.data.align.constant.TableConstants;
|
||||
import com.hanserwei.hannote.data.align.domain.mapper.InsertRecordMapper;
|
||||
import com.hanserwei.hannote.data.align.model.vo.NoteOperateMqDTO;
|
||||
import jakarta.annotation.Resource;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;
|
||||
import org.apache.rocketmq.spring.core.RocketMQListener;
|
||||
import org.springframework.beans.factory.annotation.Value;
|
||||
import org.springframework.core.io.ClassPathResource;
|
||||
import org.springframework.data.redis.core.RedisTemplate;
|
||||
import org.springframework.data.redis.core.script.DefaultRedisScript;
|
||||
import org.springframework.data.redis.core.script.RedisScript;
|
||||
import org.springframework.scripting.support.ResourceScriptSource;
|
||||
import org.springframework.stereotype.Component;
|
||||
|
||||
import java.time.LocalDate;
|
||||
import java.time.format.DateTimeFormatter;
|
||||
import java.util.Collections;
|
||||
import java.util.Objects;
|
||||
|
||||
@Component
|
||||
@Slf4j
|
||||
@RocketMQMessageListener(
|
||||
consumerGroup = "han_note_group_data_align_" + MQConstants.TOPIC_NOTE_OPERATE,
|
||||
topic = MQConstants.TOPIC_NOTE_OPERATE
|
||||
)
|
||||
public class TodayNotePublishIncrementData2DBConsumer implements RocketMQListener<String> {
|
||||
|
||||
@Resource
|
||||
private RedisTemplate<String, Object> redisTemplate;
|
||||
|
||||
@Resource
|
||||
private InsertRecordMapper insertRecordMapper;
|
||||
|
||||
/**
|
||||
* 表总分片数
|
||||
*/
|
||||
@Value("${table.shards}")
|
||||
private int tableShards;
|
||||
|
||||
@Override
|
||||
public void onMessage(String body) {
|
||||
log.info("## TodayNotePublishIncrementData2DBConsumer 消费到了 MQ: {}", body);
|
||||
|
||||
// 1. 布隆过滤器判断该日增量数据是否已经记录
|
||||
// 消息字符串转换为DTO类
|
||||
NoteOperateMqDTO noteOperateMqDTO = JsonUtils.parseObject(body, NoteOperateMqDTO.class);
|
||||
|
||||
if (Objects.isNull(noteOperateMqDTO)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 发布、被删除的作品的作者Id
|
||||
Long noteCreatorId = noteOperateMqDTO.getCreatorId();
|
||||
|
||||
// 今日日期
|
||||
String date = LocalDate.now()
|
||||
.format(DateTimeFormatter.ofPattern("yyyyMMdd"));
|
||||
|
||||
String bloomKey = RedisKeyConstants.buildBloomUserNoteOperateListKey(date);
|
||||
|
||||
// 1. 布隆过滤器判断该日增量数据是否已经记录
|
||||
DefaultRedisScript<Long> script = new DefaultRedisScript<>();
|
||||
// Lua 脚本路径
|
||||
script.setScriptSource(new ResourceScriptSource(new ClassPathResource("/lua/bloom_today_user_note_publish_check.lua")));
|
||||
// 返回值类型
|
||||
script.setResultType(Long.class);
|
||||
|
||||
// 执行 Lua 脚本,拿到返回结果
|
||||
Long result = redisTemplate.execute(script, Collections.singletonList(bloomKey), noteCreatorId);
|
||||
|
||||
// 若布隆过滤器判断不存在(绝对正确)
|
||||
if (Objects.equals(result, 0L)) {
|
||||
// 根据分片总数,取模,分别获取对应的分片序号
|
||||
long userIdHashKey = noteCreatorId % tableShards;
|
||||
|
||||
// 将日增量变更数据,写入日增量表中
|
||||
// - t_data_align_note_publish_count_temp_日期_分片序号
|
||||
insertRecordMapper.insert2DataAlignUserNotePublishCountTempTable(TableConstants.buildTableNameSuffix(date, userIdHashKey), noteCreatorId);
|
||||
|
||||
// 3. 数据库写入成功后,再添加布隆过滤器中
|
||||
RedisScript<Long> bloomAddScript = RedisScript.of("return redis.call('BF.ADD', KEYS[1], ARGV[1])", Long.class);
|
||||
redisTemplate.execute(bloomAddScript, Collections.singletonList(bloomKey), noteCreatorId);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,129 @@
|
||||
package com.hanserwei.hannote.data.align.consumer;
|
||||
|
||||
import com.hanserwei.framework.common.utils.JsonUtils;
|
||||
import com.hanserwei.hannote.data.align.constant.MQConstants;
|
||||
import com.hanserwei.hannote.data.align.constant.RedisKeyConstants;
|
||||
import com.hanserwei.hannote.data.align.constant.TableConstants;
|
||||
import com.hanserwei.hannote.data.align.domain.mapper.InsertRecordMapper;
|
||||
import com.hanserwei.hannote.data.align.model.vo.FollowUnfollowMqDTO;
|
||||
import jakarta.annotation.Resource;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;
|
||||
import org.apache.rocketmq.spring.core.RocketMQListener;
|
||||
import org.springframework.beans.factory.annotation.Value;
|
||||
import org.springframework.core.io.ClassPathResource;
|
||||
import org.springframework.data.redis.core.RedisTemplate;
|
||||
import org.springframework.data.redis.core.script.DefaultRedisScript;
|
||||
import org.springframework.data.redis.core.script.RedisScript;
|
||||
import org.springframework.scripting.support.ResourceScriptSource;
|
||||
import org.springframework.stereotype.Component;
|
||||
import org.springframework.transaction.annotation.Transactional;
|
||||
|
||||
import java.time.LocalDate;
|
||||
import java.time.format.DateTimeFormatter;
|
||||
import java.util.Collections;
|
||||
import java.util.Objects;
|
||||
|
||||
@Slf4j
|
||||
@Component
|
||||
@RocketMQMessageListener(
|
||||
consumerGroup = "han_note_group_data_align_" + MQConstants.TOPIC_COUNT_FOLLOWING,
|
||||
topic = MQConstants.TOPIC_COUNT_FOLLOWING
|
||||
)
|
||||
public class TodayUserFollowIncrementData2DBConsumer implements RocketMQListener<String> {
|
||||
|
||||
@Resource
|
||||
private RedisTemplate<String, Object> redisTemplate;
|
||||
|
||||
@Resource
|
||||
private InsertRecordMapper insertRecordMapper;
|
||||
|
||||
/**
|
||||
* 表总分片数
|
||||
*/
|
||||
@Value("${table.shards}")
|
||||
private int tableShards;
|
||||
|
||||
@Override
|
||||
@Transactional(rollbackFor = Exception.class)
|
||||
public void onMessage(String body) {
|
||||
log.info("## TodayUserFollowIncrementData2DBConsumer 消费到了 MQ: {}", body);
|
||||
|
||||
// 字符串转换为DTO对象
|
||||
FollowUnfollowMqDTO followUnfollowMqDTO = JsonUtils.parseObject(body, FollowUnfollowMqDTO.class);
|
||||
|
||||
if (Objects.isNull(followUnfollowMqDTO)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 关注/取关操作
|
||||
// 源用户 ID
|
||||
Long userId = followUnfollowMqDTO.getUserId();
|
||||
// 目标用户 ID
|
||||
Long targetUserId = followUnfollowMqDTO.getTargetUserId();
|
||||
|
||||
// 今日日期
|
||||
String date = LocalDate.now()
|
||||
.format(DateTimeFormatter.ofPattern("yyyyMMdd")); // 转字符串
|
||||
|
||||
// ------------------------- 源用户的关注数变更记录 -------------------------
|
||||
// 布隆过滤器判断该日增量数据是否已经记录
|
||||
String userBloomKey = RedisKeyConstants.buildBloomUserFollowListKey(date);
|
||||
|
||||
// 1. 布隆过滤器判断该日增量数据是否已经记录
|
||||
DefaultRedisScript<Long> script = new DefaultRedisScript<>();
|
||||
// Lua 脚本路径
|
||||
script.setScriptSource(new ResourceScriptSource(new ClassPathResource("/lua/bloom_today_user_follow_check.lua")));
|
||||
// 返回值类型
|
||||
script.setResultType(Long.class);
|
||||
|
||||
// 执行 Lua 脚本,拿到返回结果
|
||||
Long result = redisTemplate.execute(script, Collections.singletonList(userBloomKey), userId);
|
||||
|
||||
// Lua 脚本:添加到布隆过滤器
|
||||
RedisScript<Long> bloomAddScript = RedisScript.of("return redis.call('BF.ADD', KEYS[1], ARGV[1])", Long.class);
|
||||
|
||||
// 若布隆过滤器判断不存在(绝对正确)
|
||||
if (Objects.equals(result, 0L)) {
|
||||
// 根据分片总数,取模,分别获取对应的分片序号
|
||||
long userIdHashKey = userId % tableShards;
|
||||
|
||||
try {
|
||||
// 将日增量变更数据,写入表 t_data_align_following_count_temp_日期_分片序号
|
||||
insertRecordMapper.insert2DataAlignUserFollowingCountTempTable(
|
||||
TableConstants.buildTableNameSuffix(date, userIdHashKey), userId);
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
// 数据库写入成功后,再添加布隆过滤器中
|
||||
redisTemplate.execute(bloomAddScript, Collections.singletonList(userBloomKey), userId);
|
||||
}
|
||||
|
||||
// ------------------------- 目标用户的粉丝数变更记录 -------------------------
|
||||
// 目标用户 ID 对应的 Bloom Key
|
||||
String targetUserBloomKey = RedisKeyConstants.buildBloomUserFansListKey(date);
|
||||
// 布隆过滤器判断该日增量数据是否已经记录
|
||||
result = redisTemplate.execute(script, Collections.singletonList(targetUserBloomKey), targetUserId);
|
||||
|
||||
// 若布隆过滤器判断不存在(绝对正确)
|
||||
if (Objects.equals(result, 0L)) {
|
||||
// 若无,才会落库,减轻数据库压力
|
||||
// 根据分片总数,取模,分别获取对应的分片序号
|
||||
long targetUserIdHashKey = targetUserId % tableShards;
|
||||
|
||||
try {
|
||||
// 将日增量变更数据,写入表 t_data_align_fans_count_temp_日期_分片序号
|
||||
insertRecordMapper.insert2DataAlignUserFansCountTempTable(
|
||||
TableConstants.buildTableNameSuffix(date, targetUserIdHashKey), targetUserId);
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
// 数据库写入成功后,再添加布隆过滤器中
|
||||
redisTemplate.execute(bloomAddScript, Collections.singletonList(targetUserBloomKey), targetUserId);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -26,4 +26,19 @@ public interface InsertRecordMapper {
|
||||
* 用户获得的收藏数:计数变更
|
||||
*/
|
||||
void insert2DataAlignUserCollectCountTempTable(@Param("tableNameSuffix") String tableNameSuffix, @Param("userId") Long userId);
|
||||
|
||||
/**
|
||||
* 用户已发布笔记数:计数变更
|
||||
*/
|
||||
void insert2DataAlignUserNotePublishCountTempTable(@Param("tableNameSuffix") String tableNameSuffix, @Param("userId") Long userId);
|
||||
|
||||
/**
|
||||
* 用户关注数:计数变更
|
||||
*/
|
||||
void insert2DataAlignUserFollowingCountTempTable(@Param("tableNameSuffix") String tableNameSuffix, @Param("userId") Long userId);
|
||||
|
||||
/**
|
||||
* 用户粉丝数:计数变更
|
||||
*/
|
||||
void insert2DataAlignUserFansCountTempTable(@Param("tableNameSuffix") String tableNameSuffix, @Param("userId") Long userId);
|
||||
}
|
||||
@@ -5,13 +5,16 @@ import com.hanserwei.hannote.data.align.domain.mapper.CreateTableMapper;
|
||||
import com.xxl.job.core.context.XxlJobHelper;
|
||||
import com.xxl.job.core.handler.annotation.XxlJob;
|
||||
import jakarta.annotation.Resource;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.beans.factory.annotation.Value;
|
||||
import org.springframework.cloud.context.config.annotation.RefreshScope;
|
||||
import org.springframework.stereotype.Component;
|
||||
import org.springframework.transaction.support.TransactionTemplate;
|
||||
|
||||
import java.time.LocalDate;
|
||||
import java.time.format.DateTimeFormatter;
|
||||
|
||||
@Slf4j
|
||||
@Component
|
||||
@RefreshScope
|
||||
@SuppressWarnings("unused")
|
||||
@@ -26,6 +29,9 @@ public class CreateTableXxlJob {
|
||||
@Value("${table.shards}")
|
||||
private int tableShards;
|
||||
|
||||
@Resource
|
||||
private TransactionTemplate transactionTemplate;
|
||||
|
||||
/**
|
||||
* 1、简单任务示例(Bean模式)
|
||||
*/
|
||||
@@ -41,15 +47,24 @@ public class CreateTableXxlJob {
|
||||
// 表名后缀
|
||||
String tableNameSuffix = TableConstants.buildTableNameSuffix(date, hashKey);
|
||||
|
||||
// 创建表
|
||||
// 创建表
|
||||
createTableMapper.createDataAlignFollowingCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignFansCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNoteCollectCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignUserCollectCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignUserLikeCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNoteLikeCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNotePublishCountTempTable(tableNameSuffix);
|
||||
transactionTemplate.execute(status -> {
|
||||
try {
|
||||
// 创建表
|
||||
createTableMapper.createDataAlignFollowingCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignFansCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNoteCollectCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignUserCollectCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignUserLikeCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNoteLikeCountTempTable(tableNameSuffix);
|
||||
createTableMapper.createDataAlignNotePublishCountTempTable(tableNameSuffix);
|
||||
return true;
|
||||
} catch (Exception e) {
|
||||
status.setRollbackOnly();
|
||||
log.error("创建表失败", e);
|
||||
}
|
||||
return false;
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
XxlJobHelper.log("## 创建日增量数据表成功,表名后缀: {}...", date);
|
||||
|
||||
@@ -0,0 +1,29 @@
|
||||
package com.hanserwei.hannote.data.align.model.vo;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
|
||||
@Data
|
||||
@AllArgsConstructor
|
||||
@NoArgsConstructor
|
||||
@Builder
|
||||
public class FollowUnfollowMqDTO {
|
||||
|
||||
/**
|
||||
* 原用户
|
||||
*/
|
||||
private Long userId;
|
||||
|
||||
/**
|
||||
* 目标用户
|
||||
*/
|
||||
private Long targetUserId;
|
||||
|
||||
/**
|
||||
* 1:关注 0:取关
|
||||
*/
|
||||
private Integer type;
|
||||
|
||||
}
|
||||
@@ -0,0 +1,29 @@
|
||||
package com.hanserwei.hannote.data.align.model.vo;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
|
||||
@Data
|
||||
@AllArgsConstructor
|
||||
@NoArgsConstructor
|
||||
@Builder
|
||||
public class NoteOperateMqDTO {
|
||||
|
||||
/**
|
||||
* 笔记发布者 ID
|
||||
*/
|
||||
private Long creatorId;
|
||||
|
||||
/**
|
||||
* 笔记 ID
|
||||
*/
|
||||
private Long noteId;
|
||||
|
||||
/**
|
||||
* 操作类型: 0 - 笔记删除; 1:笔记发布;
|
||||
*/
|
||||
private Integer type;
|
||||
|
||||
}
|
||||
@@ -0,0 +1,16 @@
|
||||
-- LUA 脚本:日增量用户关注、取关变更数据布隆过滤器
|
||||
|
||||
local key = KEYS[1] -- 操作的 Redis Key
|
||||
local userId = ARGV[1] -- Redis Value
|
||||
|
||||
-- 使用 EXISTS 命令检查布隆过滤器是否存在
|
||||
local exists = redis.call('EXISTS', key)
|
||||
if exists == 0 then
|
||||
-- 创建布隆过滤器
|
||||
redis.call('BF.ADD', key, '')
|
||||
-- 设置过期时间,一天后过期
|
||||
redis.call("EXPIRE", key, 20 * 60 * 60)
|
||||
end
|
||||
|
||||
-- 校验该变更数据是否已经存在(1 表示已存在,0 表示不存在)
|
||||
return redis.call('BF.EXISTS', key, userId)
|
||||
@@ -0,0 +1,16 @@
|
||||
-- LUA 脚本:日增量笔记发布、删除变更数据布隆过滤器
|
||||
|
||||
local key = KEYS[1] -- 操作的 Redis Key
|
||||
local userId = ARGV[1] -- Redis Value
|
||||
|
||||
-- 使用 EXISTS 命令检查布隆过滤器是否存在
|
||||
local exists = redis.call('EXISTS', key)
|
||||
if exists == 0 then
|
||||
-- 创建布隆过滤器
|
||||
redis.call('BF.ADD', key, '')
|
||||
-- 设置过期时间,一天后过期
|
||||
redis.call("EXPIRE", key, 20 * 60 * 60)
|
||||
end
|
||||
|
||||
-- 校验该变更数据是否已经存在(1 表示已存在,0 表示不存在)
|
||||
return redis.call('BF.EXISTS', key, userId)
|
||||
@@ -76,9 +76,9 @@
|
||||
CREATE TABLE IF NOT EXISTS `t_data_align_note_publish_count_temp_${tableNameSuffix}`
|
||||
(
|
||||
`id` bigint unsigned NOT NULL AUTO_INCREMENT COMMENT '主键ID',
|
||||
`note_id` bigint unsigned NOT NULL COMMENT '笔记ID',
|
||||
`user_id` bigint unsigned NOT NULL COMMENT '用户ID',
|
||||
PRIMARY KEY (`id`) USING BTREE,
|
||||
UNIQUE KEY `uk_note_id` (`note_id`)
|
||||
UNIQUE KEY `uk_user_id` (`user_id`)
|
||||
) ENGINE = InnoDB
|
||||
DEFAULT CHARSET = utf8mb4
|
||||
COLLATE = utf8mb4_unicode_ci COMMENT ='数据对齐日增量表:用户发布笔记数';
|
||||
|
||||
@@ -20,4 +20,19 @@
|
||||
insert into `t_data_align_user_collect_count_temp_${tableNameSuffix}` (user_id)
|
||||
values (#{userId})
|
||||
</insert>
|
||||
|
||||
<insert id="insert2DataAlignUserNotePublishCountTempTable" parameterType="map">
|
||||
insert into `t_data_align_note_publish_count_temp_${tableNameSuffix}` (user_id)
|
||||
values (#{userId})
|
||||
</insert>
|
||||
|
||||
<insert id="insert2DataAlignUserFollowingCountTempTable" parameterType="map">
|
||||
insert into `t_data_align_following_count_temp_${tableNameSuffix}` (user_id)
|
||||
values (#{userId})
|
||||
</insert>
|
||||
|
||||
<insert id="insert2DataAlignUserFansCountTempTable" parameterType="map">
|
||||
insert into `t_data_align_fans_count_temp_${tableNameSuffix}` (user_id)
|
||||
values (#{userId})
|
||||
</insert>
|
||||
</mapper>
|
||||
Reference in New Issue
Block a user