feat(ai): 切换默认模型并新增流式对话接口- 将默认模型从 deepseek-chat 切换为 deepseek-reasoner

- 新增 /ai/generateStream 接口支持流式对话输出
- 新增 /v1/ai/generateStream 接口支持 reasoning 内容流式输出
- 引入 commons-lang3 依赖用于字符串处理- 添加 Flux 支持实现异步流式响应
- 完善 DeepSeekAssistantMessage 处理逻辑,区分推理内容与最终回答
This commit is contained in:
hanserwei
2025-10-21 14:04:49 +08:00
parent 5158a9bcb3
commit 62cf0ed548
4 changed files with 75 additions and 1 deletions

View File

@@ -1,11 +1,14 @@
package com.hanserwei.airobot.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.deepseek.DeepSeekChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
@RestController
@RequestMapping("/ai")
@@ -25,4 +28,19 @@ public class DeepSeekChatController {
return chatModel.call(message);
}
/**
* 流式对话
* @param message 对话输入内容
* @return 对话结果
*/
@GetMapping(value = "/generateStream", produces = "text/html;charset=utf-8")
public Flux<String> generateStream(@RequestParam(value = "message", defaultValue = "你是谁?") String message) {
// 构建提示词
Prompt prompt = new Prompt(new UserMessage(message));
// 流式输出
return chatModel.stream(prompt)
.mapNotNull(chatResponse -> chatResponse.getResult().getOutput().getText());
}
}

View File

@@ -0,0 +1,49 @@
package com.hanserwei.airobot.controller;
import jakarta.annotation.Resource;
import org.apache.commons.lang3.StringUtils;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.deepseek.DeepSeekAssistantMessage;
import org.springframework.ai.deepseek.DeepSeekChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
@RestController
@RequestMapping("/v1/ai")
public class DeepSeekR1ChatController {
@Resource
private DeepSeekChatModel chatModel;
/**
* 流式对话
* @param message 对话输入内容
* @return 对话结果
*/
@GetMapping(value = "/generateStream", produces = "text/html;charset=utf-8")
public Flux<String> generateStream(@RequestParam(value = "message", defaultValue = "你是谁?") String message) {
// 构建提示词
Prompt prompt = new Prompt(new UserMessage(message));
// 流式输出
return chatModel.stream(prompt)
.mapNotNull(chatResponse -> {
// 获取响应内容
DeepSeekAssistantMessage deepSeekAssistantMessage = (DeepSeekAssistantMessage) chatResponse.getResult().getOutput();
// 推理内容
String reasoningContent = deepSeekAssistantMessage.getReasoningContent();
// 推理结束后的正式回答
String text = deepSeekAssistantMessage.getText();
// 若推理内容有值,则响应推理内容,否则,说明推理结束了,响应正式回答
return StringUtils.isNotBlank(reasoningContent) ? reasoningContent : text;
});
}
}